Local-scale structures across the morphotropic phase boundary in PbZr1−xTixO3

نویسندگان

  • Nan Zhang
  • Hiroko Yokota
  • A M Glazer
  • D A Keen
  • Semën Gorfman
  • P A Thomas
  • Wei Ren
  • Zuo-Guang Ye
چکیده

Lead zirconate titanate (PZT) is one of the most widely studied piezoelectric materials, mainly because of its 'mysterious' relationship between the so-called morphotropic phase boundary (MPB) and its strong piezoelectric coupling factor. Using results from a pair distribution function analysis, this paper examines how the complex local structure in PZT affects the long-range average structure across the MPB. A monoclinic M C type structure is discovered in PZT. A first-order transformation between the monoclinic M A and M C components in both the average and local structures explains the sudden change in piezoelectric effect around these compositions. The role of polarization rotation in the enhancement of the piezoelectric properties is discussed with respect to the composition of PZT. The structure-property relationship that is revealed by this study explains the unique properties of PZT, and may be applicable in the design of new MPB-type functional materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase Diagram for Epitaxial PbZr1 xTixO3 Thin Films at the Bulk Morphotropic Boundary Composition

A phase diagram of temperature versus strain was constructed for a (001)-oriented PbZr1 xTixO3 epitaxial single crystal thin film near the bulk morphotropic boundary composition (x5 0.47) on an (001)-oriented cubic substrate. The phase-field approach is employed. It is shown that a mixture of distorted rhombohedral, orthorhombic, and tetragonal phases exists under small values of strain, i.e., ...

متن کامل

Local structure study of the off - center displacement of Ti and Zr across the morphotropic phase boundary of PbZr

X-ray absorption fine structure (XAFS) experiments were carried out on a series of ferroelectric materials PbZr1−xTixO3 (PZT) sx=0.40,0.47,0.49,0.55d to study the local structure around Ti and Zr atoms in each sample. Based on the fact that PZT has a single phase in the morphotropic phase boundary (MPB) from the x-ray diffraction measurements, both extended XAFS (EXAFS) and x-ray absorption nea...

متن کامل

Ferroelectric domain morphologies of „001... PbZr1−xTixO3 epitaxial thin films

Ferroelectric domain morphologies in s001d PbZr1−xTixO3 epitaxial thin films were studied using the phase-field approach. The film is assumed to have a stress-free top surface and is subject to a biaxial substrate constraint. Both the electrostatic open-circuit and short-circuit boundary conditions on the film surfaces were considered. The phase-field simulations indicated that in addition to t...

متن کامل

Structural Behaviour of Solid Solutions in the NdAlO3-SrTiO3 System

Single-phase mixed aluminates-titanates Nd1-x Sr x Al1-x Ti x O3 (x = 0.3 ÷ 0.9) were prepared from stoichiometric amounts of constituent oxides Nd2O3, Al2O3, TiO2 and strontium carbonate SrCO3 by solid-state reaction technique in air at 1773 K. Crystal structure parameters of Nd1-x Sr x Al1-x Ti x O3 were refined by full-profile Rietveld refinement in space groups R [Formula: see text] c (x = ...

متن کامل

A strain-driven morphotropic phase boundary in BiFeO3.

Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018